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We show the existence of steadily moving solitary pulses �SPs� in the complex Ginzburg-Landau equation,
which includes the cubic-quintic nonlinearity and a conservative linear driving term, whose amplitude is a
standing wave with wave number k and frequency �, the motion of the SPs being possible at resonant
velocities ±� /k, which provide for locking to the drive. The model may be realized in terms of traveling-wave
convection in a narrow channel with a standing wave excited in its bottom �or on the surface�. An analytical
approximation is developed, based on an effective equation of motion for the SP coordinate. Direct simulations
demonstrate that the effective equation accurately predicts characteristics of the driven motion of pulses, such
as a threshold value of the drive’s amplitude. Collisions between two solitons traveling in opposite directions
are studied by means of direct simulations, which reveal that they restore their original shapes and velocity
after the collision.
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I. INTRODUCTION AND THE MODEL

Complex Ginzburg-Landau �CGL� equations are universal
models describing formation of extended patterns and soli-
tary pulses �SPs� in dissipative nonlinear media driven by
intrinsic gain. These models are interesting by themselves
�1�, and also due to their various physical applications. In
particular, SP solutions explain the existence of localized
pulses observed in traveling-wave convection �TWC� �2� and
pulsed �soliton� operation regimes featured by fiber lasers
�3�.

Exact SP solutions are available in the CGL equation with
the cubic nonlinearity �4�, but these pulses are unstable. A
generalization of the model, which makes it possible to cre-
ate stable SPs, is provided by the cubic-quintic �CQ� nonlin-
earity. The accordingly modified CGL equation includes lin-
ear loss and cubic gain �on the contrary to the linear gain and
cubic loss in the cubic equation�, and an additional quintic
lossy term that provides for the overall stability. The CQ
CGL equation was introduced by Petviashvili and Sergeev
�in the context of two-dimensional models� �5�, and its stable
SP solutions �in one dimension� were first predicted, using an
analytical approximation based on the proximity to the non-
linear Schrödinger �NLS� equation, in Ref. �6�. Later, pulses
and their stability in the CQ CGL equation were investigated
in detail, see Refs. �7–10� and additional references therein.

Stable SPs have also been found in a model with the cubic
nonlinearity only, which is based on the cubic CGL equation
linearly coupled to an extra linear dissipative equation �12�.
This system gives rise to exact analytical solutions for stable
SPs �13�, and to �numerically found� breathers, i.e., ran-
domly oscillating and randomly walking robust pulses �14�.
In this connection, it is necessary to mention that standing
chaotic pulses were found in the CQ CGL equation too �15�,

and such pulses were observed experimentally in electrohy-
drodynamic convection in liquid crystals �16�.

A problem of fundamental interest is to understand con-
ditions providing for the existence of steadily moving SPs.
Solutions for stable SPs of a permanent �asymmetric� shape
moving at a constant velocity �in either direction� were also
found �in a numerical form� in the CQ CGL equation �9�;
these solutions admit a single value of the velocity, and they
may be regarded as bound states of a front �traveling shock
wave, which is another fundamental solution of CGL equa-
tions �11�� and an SP per se. On the other hand, the motion of
pulses at arbitrary velocity are obviously possible in the CQ
CGL equation that does not include the diffusion term �10�.
In the experiment, pulses persistently moving in either direc-
tion, at a very low uniquely selected velocity, were observed
in TWC �2�. The motion and its extreme slowness were ex-
plained by coupling between the CGL equations for the
right- and left-traveling waves �which can be replaced by a
single fourth-order CGL equation �17�� and an additional real
diffusion-type equation for the concentration field in a binary
fluid, where the TWC experiments are performed �18�.

SPs may be set in persistent motion not only by their
intrinsic dynamics, but also by an external drive. In physi-
cally relevant situations, this includes a combination of a
spatially periodic inhomogeneity—typically, in the form of
cos�kx�—and a time-periodic �ac� driving field applied to the
system, in the form of cos��t�. Although the two factors
usually act separately �i.e., they appear in different terms of
the corresponding equation�, the interplay between them
naturally suggest a possibility to observe motion of pulses at
fundamental resonant velocities, ±� /k, and, possibly, also at
velocities corresponding to higher spatial and temporal har-
monics, i.e., ±�m� /nk�, with integer m and n.

In models �different from the CGL equations� which give
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rise to topological solitons, the ac-driven progressive motion
of solitons in dissipative media was predicted in both dis-
crete settings �in which case the discreteness itself provides
for the periodic spatial inhomogeneity�, based on the Toda
�19� and Frenkel-Kontorova �20� lattices, and in continuum
models based on modified sine-Gordon equations, that de-
scribe weakly damped periodically inhomogeneous ac-driven
long Josephson junctions �LJJs� �21�. Supporting motion of a
topological soliton by the ac drive is relatively easy, as the
driving field directly couples to the topological charge �in
particular, the bias current applied to LJJ directly acts on the
magnetic-flux quantum carried by the corresponding topo-
logical soliton �fluxon, alias kink��. In particular, the motion
of the fluxon in a circular LJJ may also be supported by a
rotating magnetic field �i.e., as a matter of fact, by an exter-
nal traveling wave� applied in the plane of the junction �22�.
In all these cases, the ac-driven motion is possible if the
amplitude of the driving field, �, exceeds a certain threshold
value, �thr �with ���thr, the traveling-wave drive cannot sup-
port the motion of a topological soliton at the velocity equal
to the phase velocity of the wave, but it can drag the soliton,
supporting its motion in a slow-drift regime �23,24��.

The predicted modes of the ac-propelled motion of soli-
tons at the resonant velocities were observed experimentally,
both in a discrete electric �LC� transmission lattice �19�, and
in a circular LJJ �25�. It is relevant to stress that the above-
mentioned regimes of the ac-driven motion are possible in
either direction, hence they are completely different from
various soliton ratchets, that have been studied in detail
theoretically and experimentally �26�.

A challenging problem is to find mechanisms which make
it possible to support persistent motion of nontopological
�dynamical� SPs in dissipative media �such as pulses in CGL
models�. An external force cannot drive them directly, as the
SP features no effective charge that may couple to the exter-
nal field �for instance, pulses in LJJs are bound states of
fluxons and antifluxons, hence the net force acting on the
pulse is zero; in fact, SPs in the CQ CGL equation may also
be realized, in some cases, as bound states of kinks and an-
tikinks �8,9��. Thus far, this possibility was only found for
discrete solitons in a weakly damped Ablowitz-Ladik lattice
driven by an ac field �27�.

In this work, we aim to demonstrate that such a stable
dynamical regime can be found in what may be considered
as a paradigmatic model, viz., the CQ CGL equation with an
extra conservative term representing a standing wave acting
on the system,

iut + 1
2uxx + �u�2u = − i�u + i�uxx + i��u�2u − i	�u�4u

− � cos�kx�cos��t�u . �1�

Coefficients �
0,�
0 and ��0,	�0 on the right-hand
side of Eq. �1� account for the linear loss, effective diffusion,
cubic gain, and quintic loss, respectively. Using the scale
invariance of Eq. �1�, we will fix k�1/4, while � and �
remain arbitrary parameters.

A straightforward physical realization of Eq. �1� can be
found in terms of TWC �in a binary fluid�, which, as said
above, is adequately modeled �in the region of the subcritical

instability� by the CQ CGL �2�. The driving term, which is a
conservative one �i.e., it yields zero contribution to the bal-
ance equation for the norm, see Eq. �4� below�, may be gen-
erated by a standing elastic �acoustic� wave created on the
bottom of the convection cell �or, possibly, a standing wave
created on the surface of the convection layer�, provided that
the drive’s wavelength, 2� /k, is much larger than the critical
wavelength of the convection-triggering instability, and � is
sufficiently small too. The latter conditions comply with the
analysis developed below, which is focused on the case of
k /�1 � is the SP’s amplitude�, and also needs to have �
small enough, to provide for a reasonably small locking
threshold, see Eqs. �9� and �10� below.

The coefficient in front of the driving term in Eq. �1� can
be decomposed into a superposition of two counter-
propagating traveling waves,

cos�kx�cos��t� = 1
2 �cos�k�x − c0t�� + cos�k�x + c0t��� , �2�

where c0�� /k. As said above, this decomposition suggests
that the drive may support motion of a soliton with either
positive or negative resonant velocity, c= ±c0. However, the
actual existence of stable moving solitons, locked to either
traveling-wave component of the drive, is not obvious. An
objective of this work is to predict this possibility in an ana-
lytical approximation, and verify it by numerical simulations
of Eq. �1�, identifying a parameter region in which SPs can
steadily move at the resonant velocity �slow drift of driven
pulses is formally possible too, but it turns out to be always
unstable, in the present model�.

The analytical and numerical findings are presented below
in Secs. II and III, respectively. In concluding Sec. IV, we
summarize the results.

II. ANALYTICAL APPROXIMATION

Equation �1� is written in the form of a perturbed nonlin-
ear Schrödinger �NLS� equation, which, in the absence of
perturbations ��=�=�=	=�=0�, has a family of ordinary
soliton solutions,

usol =  sech��x − ��t���eicx+�i/2��2−c2�t, �̇ = c , �3�

with arbitrary amplitude  and velocity c �the overdot stands
for d /dt�. For �=0 �no driving term�, but with � ,� ,� ,	
�0, two stationary solitons are selected from continuous
family �3� by the norm-balance condition,

d

dt	
−�

+�

�u�x��2dx� = 0. �4�

In the lowest approximation of the perturbation theory, the
substitution of wave form �3� in Eq. �4� yields the following
values of the amplitude �6�:

±
2 =

5�2� − �� ± �5�5�2� − ��2 − 96�	�
16	

, �5�

while the velocity is zero. The pulses corresponding to larger
and smaller values given by Eq. �5�, i.e., + and −, are
stable and unstable, respectively.
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To proceed with the analytical approach for ��0, we
make use of the balance equation for the momentum, P
= i−�

+�ux
*udx, with the asterisk standing for the complex con-

jugate. Indeed, an exact corollary of Eq. �1� is

dP

dt
= − 2�P − �


−�

+�

i�uxuxx
* − ux

*uxx�dx

+ 

−�

+�

���u�2 − 	�u�4�i�uux
* − u*ux�dx

− �k cos��t�

−�

+�

sin�2kx��u�2dx . �6�

In the spirit of the multiscale perturbation theory, we assume
that the loss and gain terms in Eq. �1� represent stronger
perturbations, hence, at the first stage of the analysis, they
select value �5� for  �the one with the upper sign�. Strictly
speaking, the use of that expression implies that the velocity

is small enough, �̇2�+
2 �then, an additional term in the

norm-balance equation �4� for the moving solitons, ���̇2,
may be neglected�. After that, the substitution of expression
�3� with the constant amplitude, =+, in Eq. �6� and
straightforward integrations yield the following effective
equation of motion for the soliton’s coordinate, ��t� �we omit
the subscript in +�:

�̈ = −
4

3
�2�̇ − 2��̇3 −

��k2

2 sinh��k/2�
sin�k��cos��t� .

�7�

In the case of narrow solitons, k /�1, Eq. �7� simplifies to

�̈ = −
4

3
�2�̇ − 2��̇3 − �k sin�k��cos��t� . �8�

Equation �8� with �=0 �no drive� admits an explicit analyti-
cal solution,

�̇2�t� =
2

3

2

�1 + 22/3�̇0
2�exp�3t/2�2� − 1

.

In the presence of the drive, the motion at average veloc-
ity c0 implies the existence of a solution to Eq. �7� in the
form of ��t�=c0�t− t0�+��t�, with some constant t0 and time-
periodic terms ��t�. Applying to Eq. �7� known methods
developed for analysis of the ac-driven motion of solitons at
the resonant velocity in Refs. �19–22�, we conclude that, in
the present case, the ac-propelled resonant motion may be
possible, provided that the drive’s amplitude exceeds a
threshold value,

� � �thr =
8���22k2 + 3�2�

3�k5 sinh	�k

2
� . �9�

The threshold is identified as the smallest value of � at which
the average value of the last �driving� term on the right-hand
side of Eq. �7� may compensate the first two �brake� terms,

with �̇=� /k. For narrow solitons, with k /�1, expression
�9� simplifies to

� � �thr =
4��

3k4 �22k2 + 3�2� . �10�

As mentioned above, in the case of ���thr one may con-
sider a drift regime, in which the SP is dragged by either
traveling wave from Eq. �2� at a small velocity, c�c0. How-
ever, additional analytical considerations, as well as direct
simulations, demonstrate that the drift mode of motion is
always unstable in the present system �unlike the regime of
the resonant motion which may be stable�. The instability of
the drift regime results in a drop of the average velocity to
zero, i.e., transition to a pulse oscillating under the action of
the ac drive, without progressive motion.

As shown in Fig. 1, we have compared analytical predic-
tion �9� for the threshold amplitude with results produced by
simulations of the effective equation of motion, Eq. �7� for
two values of the drive frequency. Good agreement is ob-
served at low dissipation rates, and the agreement deterio-
rates with the increase of �2, which is quite natural, as the
perturbation theory is based on the assumption of weak dis-
sipation. Generally, analytical expression �9� underestimates
the actual threshold.

A typical example of the dependence of the established
ac-driven regimes of motion �as predicted by equation of
motion �7�� on initial values of the coordinate and velocity is
displayed in Fig. 2. For the explored parameter range, simu-
lations of Eq. �7� demonstrate that the motion regimes cor-
responding to the fundamental-resonance velocities, ±� /k,
are single stable states �attractors� for ���thr �velocities cor-
responding to the locking of a moving SP to higher-order
resonances do not emerge in the simulations�, and only states
with zero average velocity are stable for ���thr. Despite the
interweaving attraction basins of the two stable regimes,

0.01 0.02 0.03 0.04
0.00

0.05

0.10

0.15

0.20

0.25

ε

β

FIG. 1. Comparison of numerical results �symbols� and the the-
oretical prediction, given by Eq. �9� �lines�, for the minimum am-
plitude of the external drive � necessary to support a steady travel-
ing solution in Eq. �7�, as a function of �, at fixed values �=0.01,
�=0.06, and 	=0.03. The value of  in Eq. �7� was calculated as
per Eq. �5� with the upper sign. Initial conditions for the numerical

solution of Eq. �7� were taken as ��0�=0, �̇�0�=0.01. Here and in
all examples displayed below, the driving wave is taken with k
=0.25. Solid line �triangles� corresponds to �=0.05, and dashed
line �squares� corresponds to �=0.1.
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which is quite a notable feature of Fig. 2, the simulations of
Eq. �7� do not reveal any hysteresis in the established states
�i.e., no overlap between the two attraction basins�.

III. NUMERICAL SIMULATIONS OF THE COMPLEX
GINZBURG-LANDAU EQUATION

A. Verification of the ac-driven regime of motion

To verify and expand the predictions of the analytical ap-
proach developed in the preceding section, we have per-
formed direct numerical simulations of the underlying driven
CQ CGL equation, Eq. �1� using the split-step fast Fourier
transform with 2048 modes, and time step �t=0.001. The

integration domain was wide enough, L=60�, so that the
progressive motion and collisions of SPs are clearly ob-
served. First, we need to evaluate the soliton’s amplitude for
a given set of gain and loss parameters in Eq. �1� with �=0,
using the above analytical results. In particular, Eq. �5� with
�=0.01, �=0.02, �=0.06, and 	=0.03 predicts that the am-
plitude of the stable soliton is +=1.31. Next, it is necessary
to estimate the threshold strength, �thr, of the ac drive in Eq.
�1�. Taking the same values of �, �, �, and 	, and �as in the
above examples� k=0.25 and �=0.05, which correspond to
resonance velocity c0�� /k=0.2, Eq. �9� yields �thr=0.077.
The spatial period �i.e., k� was selected so as to minimize
excitation of internal vibrations in the SP, observed in direct
simulations of Eq. �1� under the action of the driving term.
For the same purpose, narrow pulses were chosen, with k
�1 �note that this assumption made it possible to simplify
Eqs. �7� and �9�, replacing them by Eqs. �8� and �10�, respec-
tively�.

In Fig. 3, we display simulated evolution of the SP which
was initially placed at position �0=16� and set in motion
with the initial velocity c0=−0.2. If the strength of the driv-
ing potential is below the threshold value, ���thr, the SP
gets trapped within a finite domain, as seen in Fig. 3 �a�; on
the other hand, simulations of Eq. �1� with ���thr reveal, as
expected, stable motion of the solitary pulse, see Fig. 3 �b�.

Systematic simulations of Eq. �1� corroborate the predic-
tions of the analytical approach based on Eq. �7�. We did not
aim to find the threshold value of the drive’s amplitude from
these simulations with a very high accuracy, but, generally,
the numerical results are in accordance with the above pre-
diction given by Eq. �9�.

B. Collisions between solitary pulses

The existence of stably moving ac-propelled SPs suggest
a possibility to consider collisions between them �cf. colli-
sions between pulses in the CQ CGL equation considered in

0.0 0.2 0.4 0.6 0.8 1.0
-0.8

-0.4

0.0

0.4

0.8

dξ
o

/d
t

ξ
0
/(2π/k)

FIG. 2. Results of numerical integration of the equation of mo-
tion, Eq. �7�, with �=0.02, =1.31, and �=0.1 �the latter value
exceeds the threshold, which is �thr�0.077, in this case, according
to Eq. �9��, produced by varying initial values of the coordinate and

velocity, �0 and �̇0. White space and black dots denote, respectively,
established states in the form of the motion with resonant velocities
c0= +0.2 and −0.2, respectively.

0 10 20 30 40 50 60
0

300

600

900

1200

1500

1800

t

X

-60 -40 -20 0 20 40 60
0

100

200

300

400

500

600

700

t

x

FIG. 3. �Color online� The soliton with amplitude =1.31 is set, at t=0, at point �0=16�, and shoved by multiplying it with exp�ic0x�,
with the intention to lend it initial velocity c0=−0.2. The coefficients in Eq. �1� are �=0.01, �=0.02, �=0.06,	=0.03, and �=0.05,k
=0.25. �a� The motion of the soliton’s center as predicted by Eq. �7� ��blue� dashed line�, and as found from direct simulations of the full
CGL equation, Eq. �1� ��red� continuous line�. In this case, with the strength of the driving force, �=0.05, taken smaller than the threshold
value �recall Eq. �9� yields �thr�0.077 for given values of the parameters�, progressive motion of the solitary pulse is not observed. �b� If
the strength of the driving force exceeds the threshold, viz., �=0.1��thr, the soliton moves steadily, as expected. In this panel, we juxtaposed
a series of the soliton’s profiles extracted from the numerical solution of Eq. �1�, with the trajectory of motion predicted by Eq. �7� �dashed
line�.
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Ref. �9��. Figure 4 displays a simulated collision of two iden-
tical pulses moving with opposite velocities, c0= ±0.2, both
driven by the standing wave with �=0.1. This and other runs
of the simulations demonstrate that the solitons survive the
collision �in contrast to strongly inelastic collisions in the CQ
CGL model, which always result in fusion of colliding pulses
into a single one �9��. As seen from Fig. 4 each soliton
readily recovers its original shape and velocity after the col-
lision, which is easily explained by the fact that these shapes
and velocities correspond to unique attractors of the ac-
driven CQ CGL equation, see above. A generic feature obvi-
ous in Fig. 4 and observed in many other runs of simulations
is that multiple collisions actually occur between the moving
pulses. The very fact that the collisions are elastic may be
explained by the fact that the SPs are close to NLS solitons,
which always interact elastically; however, multiple colli-
sions are not featured by exact solutions of the NLS equation
which describe collisions between solitons.

The collisions are additionally illustrated, in Fig. 5, by
plots showing the norm and amplitude of the colliding pulses
as functions of time. It is seen that the amplitude undergoes
large changes when the collision takes place, but later it
quickly recovers the original value. No tangible radiation
coming out from the collision region has been detected in the
simulations. As concerns the multiple character of the colli-
sion, it may be explained by the fact that, in the state of
strong overlap between the colliding pulses, extra loss takes
place �as suggested by the time dependence of the total norm
in Fig. 5�, and this loss impedes immediate separation of the
pulses after the collision.

IV. CONCLUSION

In this paper, we have shown that solitary pulses in the
CQ �cubic-quintic� CGL equation which includes the conser-
vative standing-wave driving term can lock to the resonant
velocities provided by the drive, and thus feature stable mo-
tion in either direction. This dynamical regime was predicted
in an analytical form, by means of the effective equation of
motion for the coordinate of the solitary pulse, which was
derived from the momentum-balance equation, and corrobo-
rated by direct simulations of the full CGL equation. In par-
ticular, the threshold value of the drive’s amplitude �the
minimum amplitude necessary to lock the pulse to the reso-
nant velocity�, which was predicted by the effective equation
of motion, is quite close to values provided by the full simu-
lations. Unlike the motion mode with the velocity corre-
sponding to the fundamental resonance with the external
drive, motion of a pulse locked to a higher-order resonance
has never been observed, nor was a dragging �slow-drift�
mode ever found. Collision between ac-driven pulses mov-
ing in opposite directions were also studied by means of the
direct simulations. It was concluded that the solitary pulses
are robust in this sense too, recovering the initial shapes and
velocities after the collision.
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FIG. 4. �Color online� Collision of two ac-driven solitary pulses
with opposite velocities, c0±0.2. After a series of repeated colli-
sions, the pulses eventually separate, completely restoring their ini-
tial shape and velocities. Parameters are the same as Fig. 3 �a�.
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FIG. 5. The time dependences of the amplitude of the wave field
�A� and its total norm �N� additionally illustrating the collision be-
tween two solitary pulses shown in Fig. 4.
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